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I. INTRODUCTION

Let X be a reflexive Banach space and M a Chebyshev subspace of X. The
metric projection (nearest point map) supported by M is denoted by P(M).
A long standing problem in approximation theory is to determine necessary
and sufficient conditions that P(M) be norm continuous for all Chebyshev
subspaces M contained in X. Whenever M is a finite dimensional Chebyshev
subspace, a compactness argument shows that P(M) is norm continuous.
Necessary and sufficient conditions that P(M) be norm continuous whenever
M has finite codimension have been given in [4, Theorem 14] and
[1, Theorem 8]. In the case of nonreflexive Banach spaces, examples have
been given in [7, p. 87], [5, Example 4], [1, Theorem 36] and [9, Theorem 4] of
finite codimensional subspaces which do not have norm continuous metric
projections.

In [4] a study of the weak sequential continuity of the metric projection
was initiated in the hopes of possibly finding a parallel attack to the problems
concerning the norm continuity of the metric projection. The following
necessary and sufficient condition for the weak sequential continuity of the
metric projection was found [4, Theorem II].

THEOREM (Holmes). Let X be a reflexive Banach space, M a Chebyshev
subspace. Then the following are equivalent:

(a) P(M) is weakly sequentially continuous.
(b) {x E X I P(M)(x) = O} is weakly sequentially closed.

Weak sequential continuity was studied, since in the proof of the above
theorem, an application of the uniform boundedness theorem was used, thus
insisting that sequences be used and not nets. Some questions concerning
weak continuity of the metric projection have been studied in [IO].

A simple corollary to the above theorem shows that whenever X is a
reflexive Banach space and M is a Chebyshev subspace of finite codimension,
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then P(M) is weakly sequentially continuous, whenever P(M) is norm
continuous. In particular, this occurs in the L~ spaces, 1 < p < 00. When
the dimension of M is finite, the question of the weak sequential continuity
of the metric projection is left open.

This paper is devoted to answering the question concerning the weak
sequential continuity of the metric projection onto a subspace of finite
dimension in an L~ space. The work exhibits the weak sequential closure of
the kernel of the metric projection, in order to apply the criterion of Holmes.
It is found that for any finite dimensional subspace of an L~ space over a
separable nonatomic measure space, the weak sequential closure of the
metric projection is the entire L~ space. Hence the metric projection is not
weakly sequentially continuous.

In another paper, we wilL discuss the results pertaining to L p spaces over
measure spaces which contain atoms. Such spaces will admit weakly sequen
tially continuous metric projections.

In this work, if we denote a Banach space as X, X* denotes the space of
continuous linear functionals on X. The symbol (.,.) is used to denote the
duality relationship of X with X*. It will sometimes be used to denote an
ordered pair in a product space. Its use will be clear from the context. U(X)
will be the closed unit ball of X, that is, U(X) = {x in X III x II <; I}. SeX) will
denote the closed unit sphere: seX) = {x in X III x II = I}. If M is a subspace
of X, SeX) n M will be denoted by SCM). MO will designate the set of linear
functionals in x* which are identically zero on M. The convergence of Xn

to x in the weak topology will be noted by X n ----" x, and the norm convergence
of X n to x will be denoted X n -+ x.

R will signify the real number field. R+ will denote the set of positive real
numbers. A l:::. B is the set (A\B) V (B\A). XA denotes the characteristic
function of A. The real valued function sgn(') is defined via sgn(O) = 0 and
sgn(x) = x/I x I, for x +- O. The set valued function supp(·) is defined on a
function space RX as follows: iffis in RX, then supp( f) = {x in X I f(x) +- OJ.
The abbreviation clspan denotes closed span. All other notation and
terminology follows [2].

DEFINITION 1.1. Let M be a subspace of a Banach space X. M is a
Chebyshev subspace if x in X implies inf{11 x - m II Im in M} is attained at a
unique element of M. Let M be a Chebyshev subspace of a Banach space X.
Then P(M): X -+ M is the metric projection of X on M defined via
inf{11 x - mill min M} = II x - P(M)(x)ll. Let k(M) = {x in X IP(M)(x) = O}
Let K(M) be the weak sequential closure of k(M). We recall that if X is a
Banach space, M a Chebyshev subspace, then

k(M) = U {x in X I L(x) = II x II}.
LeS(MO)
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DEFINITION 1.2. Let X be a Banach space. LetI: X ~ X. ThenI is weakly
sequentially continuous if and only if Xn ->. X implies I(xn) ->. f(x).

2. THE L,p CASE

This section contains the major result of this paper. First, we formulate
the results for the measure space of the real number field, Borel subsets,
and Lebesgue measure: (R, B, m). We are interested in finding the finite
dimensional subspaces Min Lv(R, B, m) such that P(M) is weakly sequentially
continuous. Theorem 2.1 shows that no such M exists in Lp{R, B, m) for
p =1= 2. This section concludes with a sketch extending the results from
(R, B, m) to a separable nonatomic measure space.

DEFINITION 2.1. Let (X, W, p,) be a measure space with a positive real
valued measure. LiX, W, p,) is the space of real valued p,-measurable
functions satisfying, I is in LiX, W, p,) if and only if (Ix 1/11' dp,)I/P < 00,

where I :s;; p < 00.

It is well known that whenever I < P < 00, then Lp{X, W, p,) is a reflexive,
rotund, smooth Banach space with (L1')* = Lq where lip + Ilq = I
[6; p. 360], [2; p. 89].

For the remainder of this paper let T denote the duality map from
LiX, W, p,) to Lq(X, W, p,) given by Tf(x) = I f(xW-1 sgn( I(X»i The
following two lemmas are elementary properties of this map T.

LEMMA 2.1. Let ai be real numbers. Let gi be in S(L1'(X, W, p,» with
supp gi being pairwise disjoint, i = I,... , k. If r = L:~=1 aiTgi, then
11 r Ilq = £L::=1 I ai IQ]I/q

•

Proof II r Ilq = [f IL: aiTgi IqP/q = [L: I ai Iq I I Tgi Iq]l/q = £L: I ai Iq]I/Q

Q.E.D.

Note that in the above proof we have used the fact that Tgi is III

S(Lq{X, W, p,» and that supp Tg; are the pairwise disjoint, i = I,..., k.

LEMMA 2.2. Let r be defined as above. Then r attains its norm on
S(span(gi I i = I,... , k».

k
Proof Let s = Li=l b;g; . Then

(s, r) = (L b;g;, LajTgj) = ~ a;bi(gi' Tg;) = ~ aibi .
~ J t t
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To satisfy the proposition we must find hi , i = 1,... , k such that
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and

But sinl:'e (a. J i = ),..., k) i1>l11 Jq(k) 1h~!e exists \i sequence (Oi 1i = 1,,,., k)
in I p (k) satisfying the (jesired conditiMs. Q.E.D.

The following definitions, although formidable, help simplify statements of
propositions and their proofs.

DEFINITION 2.1. A in W is p-diuonrinuous if there exists {g,,} in
Lp(X, W, po) such that

(1) II gn II = I, fleA D supp g,,) = 0;

(2) fA g" dft = 0; there is € > 0, C <: 00 such that € ~ Ig,,(x) I < C for
almost all x in A;

(3) g" -> 0, and

(4) Tg" -" CAXA with CA =F O.

W iy p-discontinuDus if A is p-disc(}n1.inu()us for all A in W

DEFINITION 2.3. Let M be a subsp.ace ()f Lq(X, W, Ik)' 1 < q < 00, A in
W is (q, M)-discominuous if it satisfies (a) Qr (b):

(a) XA is in MO.

(b) there exist { g..} in Lp(X, W, fJ-), 1 <: p < 00, lip + lit] = 1, such that

(1) Ii g.. I) = i, ~(A 6 supp g,,) = 0;

(2) g" is in MO [or all n;

(3) g" -> 0; and

(4) Tg" -> CAXA , C-1 =1= O.

Let M be a subspac~ of Lq(X, W, p,), 1 < q < 00. Then Wig (q, M)-discon
tim~ous if A is ('1, M)-discontinuous fQT all A in W.

PROPOSITION 2.1. Let M he a dtJSi!d subspace of LqC~, W, p.), If W is
(q, M)-discontinutJus, then every simple function is an element tJ1 K(M).

Proof Let r = 2:.;=1 ajXA
f

be an arbitrary simple function. Since W is
(q, M)-discontinuous there is for every j a sequence {g",(A j )} in MO with
Tg,,(A j) -> CAJXA;' Choose hj such that CAlf = aj. Letr" = L;=l bjTg,,(Aj).
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By Lemma 2.2, there is a linear functional Vn = r;=l dj gn(A j ) such that
(vn , rn) = II rn II and II Vn II = I. Hence rn is in k(M). But

s s

r n = L bjTgnCAj)-"" L aiXAj = r.
j~l j~l

Therefore r is in K(M). Q.E.D.

The following lemma is highly technical, but is needed to obtain the major
results of this section.

LEMMA 2.3. Let {gn}, {fn} be elements 01 Lp(X, W, f') and A E W be such
that

(I) f'(A 6 sUPp/n) = Olor all n;

(2) there exists 0 < C < 00, € > 0 such that € ~ Ign(X) I < Clor almost
all x in A, lor all n;

(3) I gn !p-l sgn(gn) -"" g; and

(4) In ~ 0 uniformly except on a set 01 zero measure.

Proof Recall that ifIn ,fare elements of Lq(X, W, f'), 1 < q < 00, then
In -"" lif and only if {fn} is bounded and fAin df' ~ fAldf' for all A in W
such that f'(A) < 00. Sinceln -- 0 uniformly except on a set of zero measure
and 1 gnCx) I < E for all n and for almost all x in A, there exists N(E) such that
for all n > N(E) , sgn(gn - In) = sgn(gn) except on a set of zero measure.
Thus for all n > N(E),

II gn - In IP-l sgn(gn -In) - 1gn !p-l sgn(gn)1

= II gn - In IP-l - Ign Ip-l I

except on a set of zero measure. Let B be an arbitrary set of finite measure in
W. Then

Ifa (I gn - In [P-l sgn(gn - In) - g) df' I
~ I t (I gn - In IP-l sgn(gn - In) - Ign IP-l sgn(gn» df' 1

+ It (I gn IP-l sgn(gll) - g) df' I·
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The second integral can be made arbitrarily small since Ig.. IP-1 sgn(g..) ->. g.
We now consider the first integral. By our initial remarks we have

Ifa (I g.. - In IP-1 sgn(g.. - In) - I gn IP-1 sgn(g..)) diL I

~ Is II gn - fn IP-1 - Ign IP-II diL for all n> N(€).

Case I: I < p < 2. By using the inequality of [8, p. 155] we have
fs II gn - In IP-I - 1gn IP-1 IdiL ~ fs II.. Ip-1 diL· But I .. -- 0 uniformly
except of a set of zero measure. Hence the first integral can be made arbitrarily
small.

Case 2: 2 ~ P ~ 00. Since for all n > N(€), II,.,(x) I < € a.e. and
gn(x)I < C for almost all x in A, we have Ign(x)/ and /gix) - In(x)/ are

elements of the finite interval [0, C + E] for almost all x in A. By using the
fact that I . IP-1 is a convex function for p ~ 2, we have

II g..(x) - 1..(x)IP-1 - Ig..(X)IP-1 I ::::;; C1 1/..(x)1

for almost all x in A, where C1 depends on €, p, and C. Since
iL(A I:':. suppIn) = 0 for all n, we apply this inequality to the first integral
obtaining IE !1 g.. - fn jP-l - Ig,., jP-1 Idp, ~ C1 Ie Ifn jdp, where C1depends
on €, p, and C. But again I .. -- 0 uniformly except on a set of zero measure.
Hence the first integral can be made arbitrarily small.

It remains to show that Ig.. - In IP-1 is L q bounded. But since
iL(A 6 supp/..) = 0 for all n and Ign IP-1 sgn gn ->. g, we have Ign - In Ip-1
is Lq bounded on X\A and by previous remarks Ig..{x) - In(x) I is bounded
for almost all x in A and hence Ig..(x) - In(x)IP-1 is Lq bounded on A.

Hence Ign - In IP-} sgn(gn - In) ->. g. Q.E.D.

PROPOSITION 2.2. Let M = span(zi I i = I,... , m) be an m-dimensional
subspace 01 Lq(X, W,iL), I < q < 00. Let A be an element of W such that
iL(A) < 00. If A is q-discontinuous then A is (q, M)-discontinuous.

Proof. Let M A = span(ziXA I i = I,..., m).

Case I: dim M A = v where I < v ::::;; m. Since dim M A = v, there exist
ti , i = 1,. .., v such that supp t; is in A and M A = span(tiXA I i = 1,..., v).
Let {gn} be the sequence satisfying the conditions of Definition 2.2. This exists
since A is q-discontinuous. Let c(n, t;) = fA gnt; diL. Note that c(n, ti ) is well
defined since gn is bounded almost everywhere on A and ti is in L q • Let
M j = span(tiXA I i 0/= j, i = 1,..., v). M j is contained in Lq(A, E(A), iL),
a finite measure space, where E(A) is the a-field induced by the set A.
M j C L}(A, E(A), p,). M j 0/= {O} by hypothesis of Case 1. Since M j is a closed
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subspace of Ll(A, L'(A), fL) and tiXA is not an element of M; , there exists an hi
in L,,:,(A, L'(A), fL) such that (t, hi) = 0 for all t in M; and (t;XA , hi) = I
[2; p. 64]. Hence hi is in LiA, L(A), fL). Thus h; is in L",(A, L'(A), fL) n
Lp(A, rCA), f.L). Setgn = gn - L;~l c(n, ti) hiXA . {gn} is in LiX, W, fL). Also
fA gnt; df.L = fA gnti dfL - L;~l e(n, t j ) fA tJI; dfL = c(n, ti) - c(n, til = O. Thus
gn is in MAO and hence in MO, since /L(A 6 supp g,,) = O. We remark that
c(n, til -->- 0, since gn ----'0 O. Hence L:~l I c(n, till -->- 0 as n -->- 00. Let
In = :L:-l c(n, t;) h;XA' Since h; is in L",(A, rCA), fL), we have In -->- 0
uniformly except on a set of zero measure. Hence gn can be written as
gn = gn - In' Clearly II gn lip ~ II gn lip + Ilfn lip· Since In -+ 0 uniformly
except on a set of zero measure and II gn II = I for all n, II gn II -->- 1. Thus
there exists N such that for all n > NOI2), II gn lip> 1/2. For n > N,
define v" = gn/II in II. Without loss of generality we assume N = O. To show
Vn ----'0 0, it suffices to show in -' 0. But in = gn - In , where gn -' 0 and
In ----'0 O. Hence in ----'0 O. To show Tv", -' CAXA ; CA oF 0, it suffices to show
Iin IP-l sgn( in) ----'0 CgXA , Cg oF O. But in = gn - In satisfies the conditions
of Lemma 2.3. Hence TVn ----'0 CAXA , CA oF O. Thus {vn} satisfies condition (b)
of Definition 2.3 of A being (q, M)·discontinuous.

Case 2: diII1(span(ti xA Ii = 1, ... , m» = 1. Then span(tiXA I i = I, ... , m) =
span(tXA) for some t in Lq(X, W, p.). If SA t dp. = 0, XA is in MI! and A satisfies
condition (a) of Definition 2.3 and hence is (q, M)-discontinuous. If
fA t df.L =1= 0, set in = (l/fL(A)) XA - (fA gn t dfLl fA t dp) XA . But in has the
same properties of the in discussed in Case 1 and hence we have the result for
Case 2. Q.E.D.

PROPOSITION 2.3. Let B be a ring. Let (X, E(B), fL) be a a-jinite measure
space. Let M be a dosed subspace of LiX, E(B), f.L). If jor all A in B, A is
(q, M)-discontinuous, then every simple function is an element of K(M).

Proof Let r = L:~l anXA be a simple function with An in B. By the
proofofProposition 2.1, r is inK(M). Let s = L:=l anXB where Bn is in I(B).
Let E > 0 be given. Then by [3, p. 56] there exists nAn in B such that
}L(An D Bn) ~ E. Hence

:( I f I an Iq I XBn - XA n \q dfL :( f I an Iq E
q.

Xn~ n~

Thus II r - s 114 can be made arbitrarily small. Since K(M) is norm closed and
simple fun~tions of the form of r are in K(M), we have s is in K(M). Q.E.D.
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The following measure theoretic concepts and facts can be found in
[3, Sec. 41].

DEFINITION 2.4. Let (X, W, p,) be a finite positive measure space. A
partition of an element E in W is a finite set P of disjoint elements of W
whose union is E. Let P = (E1 , ••• , En) be a 'partition of E in W. Define the
norm ofPto be II P II = max(p,(Ei ) I i = 1,... , n). A sequence of partitions {Pn}
is called dense if to every element E of Wand to every E > 0, there exists an n
and Eo in W such that Eo = UiEF E i , and p,(E D Eo) < E, where the E i are
in the partition Pnand F is a finite index set.

Fact 2.1. If Y is the unit interval in R, B the class of Borel subsets of Y,
m Lebesgue measure on B and if {Qn} is a sequence of partitions of Y into
intervals such that limn~oo II Qn II = 0, then {Qn} is dense.

The next two results are concerned with the particular measure space
(R, B, m) where B is the class of all Borel sets of Rand m is Lebesgue
measure.

PROPOSITION 2.4. Let I be a finite interval in R in the measure space
(R, B, m). Then I is p-discontinuous, 1 < p =F 2 < 00.

Proof Let Pn be the canonical partition of I into 2n distinct disjoint
intervals I(j, n) where j = I, ... , 2n, with m(I(j, n)) = 1/2nm(J). We note that
if I(j, n + I) is in Pn+l then I(j, n + I) C I(i, n) for some index i. Also the
sequence {Pn} in dense by Fact 2.1. For each n and for each I(j, n), we form
the two disjoint intervals I(j, n, I) and I(j, n, 2) contained in I(j, n) such that
m(I(j, n, 1)) = 3m(I(j, n, 2)). Define the functionsfn on I as follows for each
n:fn(x) = 2:;:1 Xm.n.ll - 3X}fl.n.2l· Note that {f n} is in LiR, B, n) since

2n

Ilfn II: = L (m(I(i, n, I)) + 3Pm(I(i, n, 2))
i~l

2n

= L: (3 + 311) m(I(i, n, 2)) = «3 + 311)1/4) m(I).
i~l

We normalize fn' setting gn = fn/llfn II· Clearly II gn II = 1 and gn satisfies
condition (1) of Definition 2.2. Since supp gn = I, we have

2n

= (l/llfn 10 L: (m(I(i, n, 1)) - 3m(I(i, n, 2))) = 0.
i~l
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It is clear that 4/«3 + 3P) m(I)) ::( Ig,.{x)I ::( (4'3)/«3 + 3P) m(I)) for all x
in I. Hence {gn} satisfies condition (2) of Definition 2.2.

We note that {fn} are uniformly bounded on 1. Denote this bound by Mg.
To show gn -->. 0, it suffices to showIn -->. 0. Hence it is sufficient to show that
given any Borel set D in B with m(D) < 00 and given € > 0, there exists an
N(€, D) such that I fDln dm I < € for all n > N(€, D).

Case I: D n I = 0 is trivial.

Case 2: E = D n I -=1= 0. Since Eel, we have by the implication of
Fact 2.1 that there exists an N(€, E) such that there exists an Eo = UieF I(j, N)
with m(E 6. Eo) < €, where F is a finite index set. Thus I IEln dm I ~
I IEln dm - IEJn dm I + 1fEJn dm I. By construction IEJn dm = °for all
n > N(€, E). But

Setting €' = M g • € we have I IDin dm I < €' for every n > N(€', D) = N(€', E).
Hence {gn} satisfies condition (3) of Definition 2.2.

It remains to show that Tgn -->. CIXI, CI -=1= 0, in order to show {gn}
satisfies condition (4) of Definition 2.2.

2n

= (1/ll/n liP-I) I XI(i.n,l) - 3:P-IXI(i.n,2)
i=1

because of the disjoint supports of the XI(i.n,i) . Hence

f Tgn dm = f Tgn dm = (1/llln liP-I) f (£ XI(i,n.l) - 3P
- 1XI(i.n.2») dm

R I I ,~1

2n

= (1/llln liP-I) I (m(I(i, n, 1)) - 3:P-lm(I(i, n, 2)))
i~1

= (1/ll/n IIP-l)(3(1 - 3P- 2) m(I))/4.

Since p -=1= 2, II Tgn dm = CIm(I); CI -=1= 0.
We remark that since Il/n II:P-l is a constant for all n, to show Tgn -->. CIXI,

it suffices to show Tin -->. KIXI where KI is the nonzero constant such that
II Tin dm = KIm(I). Also we note that {Tin} are uniformly bounded on 1.
Denote this bound by M Tg •
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To show Tin -' KlXl, it suffices to show that for any Borel set D
of finite measure and given E > 0, there exists an N(E, D) such that
I fD Tin dm - Kl fD Xl dm I < E, for all n > N(E, D).

Case 1: D n I = 0 is trivial.

Case 2: D n I = E =F 0. For the same reasons as before we obtain an
N(E, E) and Eo such that m(E L.. Eo) < E. Thus

IIe Tin dm - Ie KlXl dm I
~ If Tin dm - f Tin dm I+ If Tin dm - Kl I Xl dm I

E ~ ~ E

~ MTgm(E L.. Eo) + I Klm(Eo) - Klm(E)I,

since fEo Tin dm = Klm(Eo) by construction. Therefore

IIe Tin dm - Ie Klxldm I ~ (MTg + I Kll)m(E L.. Eo) ~ (MTg + I Kll)· E.

Thus Tin -' KlXl . Hence {gn} satisfies the conditions of Definition 2.2 and I
is p-discontinuous. Q.E.D.

The following result characterizes K(M) for any finite dimensional subspace
M of Lq(R, B, m).

THEOREM 2.1. Let M be a finite dimensional subspace 01 Lq{R, B, m),
1 < q =F 2 < 00. Then K(M) = Lq{R, B, m).

Proof Let I be any interval in B. Proposition 2.4, I is q-discontinuous.
By Proposition 2.2, I is (q, M)-discontinuous. Since B is the a-field generated
by finite unions of disjoint intervals, we have every simple function is in K(M)
by Proposition 2.3. But K(M) is norm closed and the simple functions are
dense in Lq(R, B, m). Q.E.D.

To conclude this section it should be noted that the results can be extended
from Lq(R, B, m) to Lq{X, W, fL) where (X, W, fL) is a separable nonatomic
measure space. A reference for the measure theoretic concepts is [3, Ch. VIII].
The technique is to note that there exists an isomorphism between every
separable nonatomic normalized measure algebra (W, fL) and the measure
algebra of the unit interval [3, Section 41, Theorem C]. Since the isomorphism
is a measure preserving transformation we can relate the integrals over the
measure spaces by [3, Section 39, Theorem C]. It can then be shown that X is
q-discontinuous by taking the sequence {fn} which satisfies Definition 2.2 for
the unit interval and checking that the sequence {fn • L} satisfies Definition 2.2
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for the set X, where L: (X, W,I-') -+ (/, B, m) is the isomorphism of the
measure algebras. This process is reasonably straightforward and yields no
new insight. So in particular, we have that given an arbitrary set A of finite
measure in Wthen A is q-discontinuous. But by Proposition 2.2, A is (q, M)
discontinuous and by Proposition 2.3 every simple function is in K(M) and
such functions are dense in Lq(X, W, 1-'). Hence we obtain

THEOREM 2.2. Let (X, W, /-,) be a separable nonatomic measure space. Let
M be a finite dimensional subspace of Lq(X, W, /-,), I < q oF 2 < 00, then
K(M) = Lq(X, W,I-'). Hence the metric projection onto M is not weakly
sequentially continuous.
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